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Creatures of the Burgess Shale, animals that lived in the sea 500 million 
years ago: These weird creatures include many early arthropods, 
ancestors of the insects: sponges Vanuxia (1), Choia (2), Pirania (3); 
brachiopods Nisusia (4); polychaetes Burgessochaeta (5); priapulid 
worms Ottia (6), Louisella (7); trilobites Olenoides (8); other 
arthropods Sidneyia (9), Leanchoilia (10), Marella (11), Canadaspis 
(12), Molaria (13), Burgessia (14), Yohoia (15), Waptia (16), Aysheaia 
(17); molluscs Scenella (18); echinoderms Echmatocrinus (19); 
chordates Pikaia (20); along with Haplophrentis (21), Opabina (22), 
lophophorate Dinomischus (23), proto-annelid Wiwaxia (24), and 
anomalocarid Laggania cambria (25). From Wikicommons https://
commons.wikimedia.org/wiki/File:Burgess_community.gif

 A Brief History of Insects 11 

A few crustaceans (crabs, lobsters, shrimps and so on) had a go 
at terrestrial life, but most never really got the hang of it. This 
group remains enormously diverse and abundant in the oceans 
to this day, but its most successful terrestrial representative is 
the humble woodlouse, an endearing and important creature 
in its way but with no serious claim to global domination.

The early arthropod adventurers on land, like woodlice and 
millipedes today, were presumably confined to damp places, 
along the water’s edge, in mud, under stones or in clumps of 
moss. Aquatic creatures tend to die of dehydration very quickly 
on land, especially small ones like most arthropods. To really 
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Some of the many bizarre Central American tree hoppers described and  
illustrated by William Weekes Fowler (1894). See Further Reading, 
pgs. 19-33.
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Declines in flying insect biomass on German nature reserves, 1989–
2014: Insects were trapped using standardised Malaise traps (top 
right). The total weight of insects caught per trap per day declined by 
76 per cent over the twenty-six years of the study. See Hallmann et al. 
(2017) in Further Reading, pgs. 19-33.
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Trends in butterfly populations in the UK, 1976 to 2017: Numbers of 
butterflies recorded on transects across the UK vary from year to year, 
but broadly the pattern is one of decline. The upper diagram is for 
common, widespread species, which fell in abundance by 46 per cent; 
the lower diagram is for rare species, which fell by 77 per cent [Crown 
copyright, Department for Environment, Food and Rural Affairs, UK 
(2020). UK Biodiversity Indicators 2020].
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Changes in geographic ranges of wild bees and hoverflies in the 
UK: The trend lines show the average proportion of 1km grid cells 
occupied by each insect species in Britain. Wild bee species are shown 
in grey (based on 139 species) and hoverflies in black (based on 214 
species). Thus, for example, in 1980, on average each hoverfly species 
occupied about 14 per cent of all 1km grid cells, but by 2013 it had 
fallen to about 11 per cent (from Powney et al., 2019).
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Population change of two insectivorous birds in England: The 
population index shown is scaled relative to 2012, which is set to 100. 
Thus one can see that the cuckoo population was just over four times 
larger in 1967 than in 2012 (top chart), while the spotted flycatcher 
population (bottom chart) was about fifteen times higher. Both species 
are specialists in eating insects, and both have undergone dramatic 
declines in England over the last fifty years. Within my memory, these 
have gone from being familiar, common birds to being such rarities 
that it is exciting to see or hear one. Reproduced from Massimino 
et al. (2020), with permission of British Trust for Ornithology.
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Patterns of range change for butterflies in the Netherlands, 1890–2017: 
The patterns are estimated from the locations of museum specimens, 
and are based on seventy-one species. The range changes are show 
relative to a value of 100 in the first time period. Declines appear to 
have been fastest in the first half of the twentieth century, before any 
detailed insect monitoring began (from van Strien et al., 2019).
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The area of farmland treated with pesticides each year in the UK: 
Every year, farmers make more pesticide applications to their crops. 
The chart shows the official government figures [from https://secure.
fera.defra.gov.uk/pusstats/] for the total area of crops treated with 
pesticides each year in the UK (74 million hectares in 2016). This 
area increased by 70 per cent between 1990 and 2016. Given that 
there are only about 4.5 million hectares of arable and horticultural 
land in the UK, and that this area remained almost unchanged over 
this period, these figures mean that each field or orchard in the UK 
is now, on average, treated about sixteen times annually. It should be 
noted that this could be the same pesticide applied sixteen times, or 
sixteen different pesticides each applied once, or some combination 
of the two. These data do not include pesticides used by farmers 
for veterinary purposes, such as the avermectins routinely given to 
livestock to protect them against parasites.
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Accumulation of a neonicotinoid insecticide in soil: Levels of the 
neonicotinoid imidacloprid detected in soil into which treated winter 
wheat seeds were sown each autumn (1991–6). The two study sites were 
both in England. Treatment rates were 66g or 133g of imidacloprid/ 
ha except in the first year, which was 56g in Bury St Edmunds, and 
112g in Wellesbourne. The data are from the EU Draft Assessment 
Report for Imidacloprid, 2006, and show beyond any doubt that 
levels of the chemical build up over time. Yet, somehow, the report 
concludes from these data that ‘the compound has no potential for 
accumulation in soil’.
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The environmental fate of neonicotinoid insecticides used as seed 
coatings: On average only about 5 per cent of the pesticide goes 
where it is intended to go – into the crop – a figure that was calculated 
by manufacturer Bayer’s own scientists (see Sur and Stork, 2003, in 
Further Reading, pgs. 19-33). Most of it ends up in the soil and soil 
water, where it can build up over time if used repeatedly. From the 
soil the chemicals can be absorbed by the roots of wildflowers and 
hedgerow plants, spreading to their leaves and flowers, or they can 
leach into streams. There is also a fundamental problem with this 
mode of application, since it is necessarily prophylactic: the farmer 
cannot know whether the crop will be attacked by pests before 
he has sown it. Prophylactic use of pesticides is contrary to all the 
principles of ‘integrated pest management’ (IPM), an approach 
that seeks to minimise pesticide use by only applying them when 
absolutely necessary, and which is regarded by most agricultural 
scientists as the optimal strategy for pest management. Under IPM, a 
host of non-chemical techniques for pest management are deployed, 
such as encouraging natural enemies, using resistant crops, and long 
crop rotations. Only if these fail, and a significant pest population is 
detected, does the farmer resort to pesticides.



13 

Impact of neonicotinoid pollution on lake invertebrates: Populations 
of zooplankton in Lake Shinji, Japan, fell dramatically after the 
introduction of neonicotinoid use on the surrounding rice paddies in 
1993 (from Yamamuro et al., 2019).
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Changing ‘toxic load’ over time: The chart shows the potential 
number of honeybees that could be killed by the pesticides applied 
to UK crops each year, in the unlikely event that all of them were 
fed to honeybees. The number has increased six-fold since 1990, as 
newer, more toxic insecticides have been adopted by farmers. From 
https://peerj.com/articles/5255/. Note that this does not include the 
considerable volume of ivermectins fed to cattle, a class of pesticides 
that are highly toxic to insects and present in large quantities in 
livestock dung, contaminating soils.
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The weight of the herbicide glyphosate used by UK farmers: 
Glyphosate is most commonly sold as the formulation Roundup, and 
is the single most popular pesticide in the world, with use increasing 
year on year. The figures shown do not include domestic use, or use by 
local authorities. Data are from DEFRA’s Pusstats website, an open-
access database which reports annual use of pesticides in UK farming.
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A subsistence farmer in Bengal, India, spraying herbicide using home-
made equipment. Note the lack of any protective mask, gloves, or 
even footwear.
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Global temperatures from 1860 to the present, with projections to 
2065: At the current rate of progression, the increase in Earth’s long-
term average temperature will reach 1.5°C above the 1850–1900 
average by 2040, and 2°C will be reached around 2065. From http://
berkeleyearth.org/global-temperatures-2017/.
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The frequency of natural disasters from 1980 to 2016: Natural 
disaster loss events due to floods, storms and fires have more than 
tripled in frequency since 1980. Data are based on insurance losses. 
Disasters that impact on humans will also have profound effects on 
insects. Data source: Economist.
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Further Reading

If you would like to know more about the subjects discussed in 
each chapter, there follows a selection of further reading. I have 
tried to include key scientific articles that provide the evidence 
underpinning our current understanding of insect declines and 
what we might do to reverse them. Sadly, many of these are not 
written for the layperson, and some of the technical jargon can be 
hard to follow. Nonetheless, non-specialists can usually glean the 
gist of an article without too much difficulty. Some of the articles 
are hidden behind paywalls, but if you are keen you can access 
most of them via the website Researchgate, which enables you 
to contact the authors directly and ask for copies of their work.
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