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E L E M E N TA L  C O M P O S I T I O N  O F  T H E  E A R T H  A N D  L I F E
(percent, by weight)

Earth 

Iron 33

Oxygen 31

Silicon 19

Magnesium 13

Nickel 1.9

Calcium 0.9

Aluminum 0.9

Everything else 0.3

Cells in the human body:

Oxygen 65

Carbon 18

Hydrogen 10

Nitrogen 3

Calcium 1.5

Phosphorous 1

Everything else 1.5
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FIGURE 1 . This remarkable 
image, taken by the 
Atacama Large Millimeter 
Array, shows HL Tauri, a 
young Sun- like star, and its 
protoplanetary disk. The 
rings and gaps evident in 
the image record emerging 
planets as they sweep their 
orbits clear of dust and 
gas. Our own solar system 
may have looked much like 
this 4.54 billion years ago. 
ALMA (ESO/NAOJ/NRAO)/
NASA/ESA
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FIGURE 2 . The Allende meteorite, a carbonaceous chondrite that fell to 
Earth in 1969. Rounded grains inside are chondrules, rocky spheroids  
that formed early in our solar system’s history and aggregated into  
larger bodies, eventually to form the inner planets of our solar system,  
including Earth. Carbonaceous chondrites contain both water and  
organic molecules, furnishing materials that would eventually end up in 
our atmosphere, oceans, and life. The accompanying block is 1 centimeter 
on each side. Matteo Chinellato (via Wiki, Creative Commons)
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FIGURE 3. A cross section 
of the Earth, showing our 
planet’s internal zonation. 
The crust on which we tread 
is only a thin surficial veneer, 
and the atmosphere and 
oceans are even thinner.

Crust
Mantle

Outer Core
Inner Core
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FIGURE 4. Siccar Point, in Scotland, where James Hutton grasped the 

dynamism of the Earth and the immensity of time. Andrew H. Knoll 
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FIGURE 5. The revolutionary map of the Earth produced by Bruce Heezen 
and Marie Tharp in 1977. Long, fault- scarred mountain chains rise from the 
deep sea floor. World Ocean Floor Panorama, Bruce C. Heezen and Marie 
Tharp, 1977. Copyright by Marie Tharp 1977/2003.    Reproduced by permission 
of Marie Tharp Maps LLC and Lamont-Doherty Earth Observatory.
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FIGURE 6. The Earth’s surface consists of interlocking plates. Plates are 
pulled apart, and new ocean crust forms along oceanic ridge systems 
(shown as double lines); this causes continents to diverge from one 
another. Plates glide past each other along transform faults (single lines), 
but at convergent margins (toothed lines) they collide, with one plate 
subducting beneath the other. Volcanoes, earthquakes, and actively 
growing mountain belts are concentrated along convergent plate 
boundaries. Map illustration by Nick Springer/Springer Cartographics, LLC
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FIGURE 7. Mountains form where continents collide (e.g., the Appalachians) 
or oceanic crust subducts beneath a continent, as shown here (the Andes),  
all driven by convection in the mantle below. Trenches, linear depressions in 
the deep seafloor, form a surface expression of convergent plate boundaries. 
Source: U.S. Geological Survey
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FIGURE 8. A reconstruction of Earth’s surface as it existed circa  
180 million years ago. The continents, which aggregated earlier, largely 
remain clustered. The Atlantic Ocean has just begun to open. In 
contrast, Tethys (the large sea south of Asia and north of the Gondwana 
continents) will soon close as Africa, India, and Australia separate and 
move northward. Eventually they will collide with Europe and Asia, 
producing the long mountain chain that runs from the Alps to the 
Himalaya, and on to New Guinea. 2016 Colorado Plateau Geosystems, Inc.

BriefHistoryofEarth_6P3_Final_9780062853912_LcA.indd   53BriefHistoryofEarth_6P3_Final_9780062853912_LcA.indd   53 1/29/21   3:55 PM1/29/21   3:55 PM

12



FIGURE 9. A cliff made of 800- to 750-million- year- old sedimentary rocks, 
exposed in the glaciated highlands of Spitsbergen. These rocks, and rocks 
like them found globally, preserve evidence of a rich microbial biota that 
existed long before the evolution of plants and animals. Andrew H. Knoll
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FIGURES 10 –13. Nodules 
of black chert occur 
within limestones in the 
Spitsbergen succession 
(Figure 10). These 
contain abundant and 
diverse microfossils of 
cyanobacteria (Figures 
11 and 12) and other 
microorganisms. 
Mudstones in the same 
succession preserve 
beautiful fossils of 
single- celled eukaryotic 
microorganisms 
(Figure 13).  Andrew H. 
Knoll

11 .

12.
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FIGURE 14. Stromatolites, laminated structures that formed when 
microbial communities trapped fine- grained sediments and bound them 
in place. Microbial communities colonized the firm surfaces of cobbles 
and then accreted upward as sediments accumulated, their growth 
recorded by the fine layering seen in the picture. The columns on the  
right are about 5 centimeters (2 inches) across. Andrew H. Knoll
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FIGURE 15. Stromatolites in 3.45-billion- year- old sedimentary rocks from 
Western Australia. Along with evidence from carbon and sulfur isotopes, 
these structures document the presence of microbial life early in Earth’s 
history. Scale is 15 centimeters (6 inches) long. Andrew H. Knoll
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FIGURE 16. The geologic timescale. Time intervals based on the 
International Chronostratigraphic Chart, version 2020, produced by the 
International Commission on Stratigraphy. 
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FIGURE 17. 2.5-billion- year- old iron formation exposed in Dales Gorge, 

Western Australia. Andrew H. Knoll 
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The question of life without oxygen is relatively easy to ad-
dress because oxygen- free environments exist today, and they 
teem with life. How does life persist in these forbidding (to us) 
habitats? In our familiar macroscopic world, plants gain energy 
and carbon via photosynthesis, harnessing light energy to form 
sugar from carbon dioxide and releasing oxygen gas as a by- 
product. In simplified form, the photosynthetic equation looks 
like this:

CO2 + H2O ➞ CH2O + O2

Animals do the reverse, ingesting organic molecules as food 
and reacting some of it with oxygen to gain energy— what we 
call respiration (plants also respire):

CH2O + O2 ➞ CO2 + H2O
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FIGURE 18. Oxygen- free habitats are common on the modern Earth. 
Here we see a microbial community from the Turks and Caicos Islands, 
in the Caribbean. The dark fibrous layer at the surface (above the upper 
arrow), actually pigmented deep green by cyanobacteria, is exposed to 
the air and so is oxygen-rich. Below this veneer (in the zone between 
the arrows), light still penetrates, but oxygen does not, giving rise to the 
slightly lighter layer rich in purple photosynthetic bacteria. These bacteria 
use hydrogen sulfide as a source of electrons and do not generate oxygen 
gas. In this layer and beneath it, aerobic respiration is impossible; some 
microorganisms respire using sulfate and other ions instead, and others 
ferment organic molecules. Andrew H. Knoll
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FIGURES 19–21 . Fossils of early 
eukaryotic organisms. (Figure 19)  
a single- celled organism with  
arm- like extensions that may have  
functioned to absorb organic 
molecules for food, from 1,500- to 
1,400-million- year- old rocks in 
northern Australia; (Figure 20) 
a thick, plate- like cell wall that 
would have protected its owner 
from an unfavorable environment 
and other organisms, also 
from 1,500- to 1,400-million- 
year- old rocks in Australia; 
(Figure 21) among the oldest 
known organisms with a simple 
multicellular structure, from 
nearly 1.6 billion- year- old rocks in 
China. The bar in 20 = 50 microns 
in 19 and 20, and = 5 millimeters  
in 21. Figures 19 and 20 by Andrew 
H. Knoll; Figure 21 courtesy of
Maoyan Zhu, Nanjing Institute of
Geology and Palaeontology

19

20

21
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FIGURES 22 AND 23. Fossils show that diverse eukaryotes thrived 
before the dawn of animals. Here we see the oldest known red 
(Figure 22) and green (Figure 23) algae, preserved in billion- year- 
old rocks from arctic Canada and China, respectively. Bar in  
Figure 22 = 25 microns for that figure, and = 225 microns for  
Figure 23. Figure 22 courtesy of Nicholas Butterfield, University of 
Cambridge; Figure 23 courtesy of Shuhai Xiao, Virginia Tech

22 23
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FIGURE 24. Fossils of early animals in 565-million- year- old sedimentary 
rocks from Mistaken Point, Newfoundland. Scale bar shows 1 centimeter 

units. Courtesy of Guy Narbonne, Queen’s University 
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FIGURES 25 AND 26. Trichoplax adhaerens and its proposed 
evolutionary relationship to both Ediacaran and living animals. 
Figure 25 courtesy of Mansi Srivastava, Harvard University

Sponges
Ediacarans
Ediacarans
Placozoans
Ediacarans
Ediacarans
Cnidarians
Bilaterians

25
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FIGURES 27–31. Fossils and trackways of animals in Ediacaran rocks, including Dickinsonia 
(Figure 27), Arborea (Figure 28), the earliest mineralized animal skeleton (Figure 29), 
Kimberella (Figure 30), and tracks made by an early bilaterian animal with limbs (Figure 31).  
Figure 27 courtesy of Alex Liu, University of Cambridge; Figure 28 courtesy of Frankie Dunn, 
University of Oxford; Figures 29 and 31 courtesy of Shuhai Xiao, Virginia Tech; Figure 30 courtesy 
of Mikhail Fedonkin, Geological Institute, Russian Academy of Sciences
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FIGURES 32–34. Cambrian 
fossils from the Burgess Shale. 
Trilobites, showing exquisitely 
preserved limbs and antennae 
(Figure 32); Opabinia, an extinct 
relative of arthropods (Figure 
33); and a polychaete worm with 
conspicuous bristles (Figure 
34). Copyright Smithsonian 
Institution— National Museum of 
Natural History. Photographs by  
Jean- Bernard Caron.
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FIGURES 35 –37. The Rhynie Chert, 407 million years old, Scotland. 
Rhynie rocks provide one of our earliest glimpses of terrestrial 
ecosystems, including simple plants (Figure 35, anatomically preserved 
cross section in Figure 36), animals, fungi (Figure 37, arrows point to 
fungi living on the tissues of Rhynie plants), algae, protozoans,  
and bacteria, all living on land or in shallow pools. Figure 35 courtesy  
of Alex Brasier, University of Aberdeen; Figure 36 courtesy of Hans Steur; 
Figure 37 courtesy of Paleobotany Group, University of Münster

35

36 37

BriefHistoryofEarth_6P3_Final_9780062853912_LcA.indd   146BriefHistoryofEarth_6P3_Final_9780062853912_LcA.indd   146 1/29/21   3:55 PM1/29/21   3:55 PM

28



FIGURE 38. Tiktaalik, a 375-million- year- old fossil (reconstructed on 
left) that exhibits features intermediate between those of fish and land 
vertebrate animals. Courtesy of Neil Shubin, University of Chicago
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FIGURE 39. Patagotitan mayorum, a gigantic titanosaur skeleton on display 
in the American Museum of Natural History, New York. From snout to tail, 
the skeleton is 122 feet (37 meters) long. © American Museum of Natural 
History/D. Finnin
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FIGURE 40. Archaeopteryx lithographica, a remarkable fossil that links 
dinosaurs and birds. This is the original specimen displayed at the Museum 
für Naturkunde in Berlin. © H. Raab (User: Vesta)/source: https://
commons.wikimedia.org/wiki/File:Archaeopteryx_lithographica_(Berlin_ 
specimen).jpg
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FIGURE 41. The Cretaceous- Paleogene boundary in Gubbio, Italy, where 
Walter Alvarez developed the case for mass extinction by meteorite impact. 
White limestones to the lower right were deposited toward the end of the 
Cretaceous Period; they contain diverse skeletons of tiny foraminiferans 
and coccolithophorid algae. The reddish limestones in the upper left 
formed at the beginning of the Paleogene Period; they contain only a few 
foram and coccolithophorid species. Separating them is a thin layer of fine 
mudstone, at the top of the white zone, much sampled by curious 
geologists. Andrew H. Knoll
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FIGURE 42. A compilation of the genus- level diversity of marine 
animals through time, painstakingly developed by Jack Sepkoski. 
Arrows point to five moments during the past 500 million years when 
diversity plummeted rapidly— the “Big Five” mass extinctions. 
Source: Sepkoski’s Online Genus Database 
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FIGURE 43. The Permian- Triassic boundary exposed in Meishan, 
China. The massively bedded rocks in the lower right are later Permian 
limestones rich in fossils. Above them, the rocks turn abruptly to  
fine- grained limestones that contain few fossils. Some 90 percent of 
marine animal species went extinct at the point in time marked by the 
change in sedimentary rock type. Andrew H. Knoll
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TODAY

1  
Million Years Ago

2  
Million Years Ago

3  
Million Years Ago

4  
Million Years Ago

5  
Million Years Ago

6  
Million Years Ago

7  
Million Years Ago

HUMANS

EARLY HOMININS

■ Homo � oresiensis

■  Homo  
neanderthalensis

■  Homo  
heidelbergensis

■ Homo erectus

■ Homo antecessor

■ Homo naledi

■  Homo  
rudolfensis ■ Homo habilis

■ Denisovans

■ Ardipithecus ramidus

■ Orrorin tugenensis

■ Sahelanthropus tchadensis

■ Ardipithecus kadabba

■ Homo sapiens
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FIGURE 44. Hominin diversity over the past 7 million years; humans are 
the sole surviving lineage of a once diverse group.

AUSTRALOPITHECINES

■ Homo � oresiensis

■  Homo  
heidelbergensis

■ Paranthropus boisei

■ Kenyanthropus platyops

■ Australopithecus sediba
■ Paranthropus robustus

■ Australopithecus africanus

■ Paranthropus aethiopicus

■ Australopithecus garhi

■ Australopithecus afarensis

■ Australopithecus anamensis
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FIGURES 45 AND 46. Humankind’s great leap forward: (Figure 45) 
Exquisite animals carved from mammoth ivory nearly 40,000 years 
ago. (Figure 46) The oldest known cave paintings, from Indonesia, 
dating back some 44,000 years. Figure 45 copyright Museum der 
Universität Tübingen MUT, J. Lipták; Figure 46 courtesy of Adam Brumm, 
Griffith University,  photo credit Ratno Sardi
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FIGURE 47. The amount of carbon dioxide in the atmosphere, measured 
hourly since 1958 from a station atop Mauna Loa in Hawaii. The small 
annual oscillations reflect the fact that there is more land in the Northern 
Hemisphere than below the equator, and so more photosynthesis in the 
northern summer, drawing down carbon dioxide levels. In the northern 
winter, photosynthesis slows but respiration keeps its pace, restoring 
carbon dioxide to the atmosphere. Scripps Institution of Oceanography
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FIGURE 48. Global temperature over the past 140 years. The chart shows 
the deviation in May temperatures from their twentieth- century  average. 
Before 1940, global temperatures were consistently below the twentieth- 
century average; since 1978, they have been consistently  above the average 
and getting warmer by the year. Source: NOAA  Climate.gov 
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